Agenda

1. Connected Vehicle: The Enabling Technology
2. CV and AV, Need Both?
3. Validate Your Installation
4. Monitor and Manage Your Installation
5. Questions
Connected Vehicle: the Enabling Technology

From Highways to Cities.
CV Services

➢ Foundational services
 ➢ Travel Times, Traveler Information, Work Zone Warnings

➢ Operational Services
 ➢ Transit Signal Priority
 ➢ Predictive travel times
 ➢ Work Zone Notifications
 ➢ Corridor Data Warehouse and Analytics Platform
 ➢ Performance measurements/metrics

➢ Safety
 ➢ CV driven incident awareness
 ➢ End of Queue Warning
 ➢ Corridor condition warnings
Agenda

1. Connected Vehicle: The Enabling Technology
2. **CV and AV, Need Both?**
3. Validate Your Installation
4. Monitor and Manage Your Installation
5. Questions
Plan for Technology and CAV Convergence

Autonomous Vehicle
Operates in isolation from other vehicles using internal sensors

Source: USDOT
March 24, 2017
“Tempe police cited a driver for making an illegal left turn and hitting one of Uber’s test Volvos while it was in self-driving mode. The Uber SUV, occupied by a test driver and an engineer in the passenger seat, flipped on its side and a third car was struck”.

The Honda was turning left and did not see the oncoming Uber vehicle due to traffic in the other direction.

The vehicles in the left most lanes were stopped but not blocking traffic so the Honda proceeded with its left turn.

The Uber was going 38 miles per hour, didn’t see the Honda, and proceeded through the intersection.

The Honda hit the Uber, which proceeded forward into a pole, flipped over and ran into two other cars.
The Honda would have still wanted to turn left, however, with V2V it would have been notified that the Uber was coming even though it couldn’t see it. Also, the Uber would have been notified about the Honda and would have known to slow down, giving the Honda more time. The accident could have been avoided, other cars would have been safe and the Uber could proceed on its way.

DSRC allows vehicles to communicate information, such as speed, bearing, and direction to nearby vehicles, even if not in the line of site.
Let’s Do The Math

(Don’t worry there’s no Quiz at the end)

➢ The V2V application Intersection Movement Assist would have provided enough information to each of the vehicles to warn the driver or software of the other vehicle.

➢ DSRC will provide information for at least 150 meters (longer in many intersections).

➢ The Uber Vehicle was traveling 38 miles per hour and the Honda was going about 10 mph, so they would have begun to get warnings 6.7 seconds before hitting each other.

 ▪ Uber 38 mph = 63.3 kph = 17.5 m/s
 ▪ Honda 10 mph = 16.7 kph = 4.7 m/s
 ▪ Total is 22.2 m/s (total speed heading toward each other)
 ▪ It takes 6.7 seconds to traverse 150m at 22.2 m/s

➢ 6.7 Seconds would be more than enough time for both vehicles to react, slow down and avoid each other.
Emergency Braking

Without V2V technology if the front car slams on its brakes, the last car will not know that this has happened if the middle car isn’t paying attention. This can cause a multi-car pile up. Traditional ADAS/AV Sensors (Camera, Lidar, Radar) can’t see through cars.

Emergency braking is best handled through V2V technology. As the front car quickly slows down this is announced via DSRC communication and then the last car can easily stop in time.

An option for trucks is to have video in the truck provide information to the car behind. A camera on the front of the truck streams video to the car behind so that that driver/AV system can “see through” the truck to see what is happening in front. When that front car brakes, the rear car will be notified. This has the advantage of not requiring DSRC in the front car.
Without V2X even autonomous vehicles will have to keep greater distance between vehicles. This takes up more road space and limits the speed at which the vehicles can travel.

With V2X the vehicles can stay closer together thus saving fuel and allowing more vehicles on an individual stretch of road which is increasingly important as the number of vehicles increases.
Platooning Advantages

Without V2X even autonomous vehicles will have to wait and detect movement from the vehicle in front before moving forward once the light changes.

With V2X the light can signal it is going to change, the vehicles can confirm they received the message and then proceed all at once saving time, fuel and road space.
Agenda

1. Connected Vehicle: The Enabling Technology
2. CV and AV, Need Both?
3. **Validate Your Installation**
4. Monitor and Manage Your Installation
5. Questions
Panasonic V2X Program

- B2B V2X RSU Development Program supporting Panasonic Smart City Initiatives
- Panasonic under MSA with Colorado DOT to provide a statewide V2X ecosystem
- State plans expanding to 1000 miles of V2X Corridor and 10,000 equipped vehicles beyond initial program

- Multi-Phase 12 mo Program
 - Base RSU Development Program
 - 100 unit I-70 90 mile V2X corridor deployment
 - C-V2X Pilot initiative in cooperation with Panasonic and Qualcomm completed by end of 2018

$1.6M Budget

Establishes industry partnership

2018-2019

100+ unit deployment

I-70 90 mile V2X corridor

Participation in automotive industry
Modeling and Coverage Testing

- Software virtualization models signal coverage for new construction such as tunnels and overpasses.
- Coverage Testing
 - Identifies optimal RSU placement
 - C470 project average distance has been 500m-700m, greatest distance was 900m
Mounting and Installation

- Simplistic mounting approach / Custom or Proprietary
- PoE per USDOT RSU 4.1 Spec standards
- O&M packages should be considered such as data storage
RSU attached to a light transmitting SPaT, MAP, RSM and TIM Messages. This is the unit that is being validated.

Kapsch OBU plus Bluetooth or Wi-Fi/Cell Modem.

Insight on a tablet or smartphone. Connects to OBU over Wi-Fi or Bluetooth.

Omnisight in the cloud records and plays back recorded data. Verifies SPaT and MAP data.
1. Connected Vehicle: The Enabling Technology
2. CV and AV, Need Both?
3. Validate Your Installation
4. Monitor and Manage Your Installation
5. Questions
Cary, NC SPaT Demonstration

- Cary and NC DOT Collaborative Corridor
- Supports FHWA SPaT Challenge Initiative
- Multi-vendor RSU and OBU Interoperability
- Intersection Safety Focus
 - Red Light Warning
 - eWalk Pedestrian Safety
 - Curve Speed Warning
 - Speed Zone Warning

- Fiscally Sound
- Establishes industry partnership
- 2018-2019
- Revealing user and agency benefits
- 20 intersection V2X corridor
- Collaboration with multiple vendors and Transportation agencies
Corridor Management

- Manage and Configure
 - Locations
 - RSUs
 - MAP Messages
- Receive and Process Real Time Alerts
- Monitor Real-Time Message Traffic
 - MAP Information (Blue & Green Lines)
 - Traffic Lights
 - Vehicles
 - Pedestrians
Data Management

- Monitor Data Being Processed
 - From RSUs
 - From OBUs
 - Other Sources
- Receive and Process Real Time Alerts
- Analytics for Gaining Future Value
Questions?

John Estrada
Vice President, CV Sales & Business Development
john.estrada@Kapsch.net

Kapsch TrafficCom

Kapsch TrafficCom North America
8201 Greensboro Drive, Suite 1002
McLean, VA 22102
USA
Phone: +1.571.230.5265

www.kapsch.net

Please Note:
The content of this presentation is the intellectual property of Kapsch AG and all rights are reserved with respect to the copying, reproduction, alteration, utilization, disclosure or transfer of such content to third parties. The foregoing is strictly prohibited without the prior written authorization of Kapsch CarrierCom AG. Product and company names may be registered brand names or protected trademarks of third parties and are only used herein for the sake of clarification and to the advantage of the respective legal owner without the intention of infringing proprietary rights.