Traffic Engineering for Optimal TSP Success
Traffic Engineering for Optimal TSP Success

Agenda

- Introduction
- Challenges
- Solution Process
- Traffic Engineering Decisions
- Case Study
- Results
About Presenter

Mark Yedlin

- PI of 1981 FHWA research on TSP
- 21 TSP projects since 1997
- Traffic engineering consultant for NYCDOT city-wide TSP since 2011

GPI:
- Full service Engineering Firm
- Staff of 1500 in over 40 US offices
- 6 offices in Pennsylvania
What is TSP?

Real Time signal adjustments to expedite buses:

- Extend Green
- Early Green
- Advance Green (Queue jump)
Why TSP?

- **Reduce Travel Time**
 - Reduce Variability
 - Maintain Schedule
 - Increase Ridership
 - Reduce Congestion

- **Reduce Operating Costs**
 - Improve Mobility
The devil is in the details

- Can you see it?
- Now?
We work in the realm of the devil

- Lots of details!!
- Many pitfalls
 - Political
 - Institutional
 - Technical
 - Many voices and choices
- Decisions influence success
Keys to Success

- Start small think big!
- Find a champion!
- Bring agencies together
- Communicate x 3
- Know what’s needed
- Understand constraints
- Address bottlenecks
- Good traffic engineering!!
Start Small – Think BIG

- Pick pilot to succeed
 - Opportunities for improvement
 - Reasonable cross street volumes

- Keep eye on the future
 - Anticipate full roll-out
 - Plan system wide policies, hardware
Find a Champion!

- Lead process
- Take responsibility
- Shephard agencies to consensus
- Keep pushing!!
Bring Agencies Together

- Department of Transportation
- Transit Agency
- Consultants
- Multiple staff in each

- Recognize different:
 - Priorities
 - Agendas
 - Responsibilities
 - Cost/Benefit realities
Communicate, Communicate, Communicate!

- Throughout process
 - Objectives
 - Policies
 - Design
 - Implementation
 - Acceptance testing
 - Ongoing operations

- Even within same agency!
What are the constraints?

- Cross street traffic
- Pedestrians, seniors
- Capacity
- Coordination
- Bus stops
- Other corridor traffic
How should it work?

- Primary objectives?
- Conditional, Unconditional TSP?
- Coordination?
- Transition?
- Competing calls?
- How soon to accept next call?
- Door switches?
What do we have to Decide?

- What timings/offsets?
- Which intersections?
- What phases?
- How much time?
- When to act?
- Which call?
- Queue jumps?
- What are effects?
- Is it worth it?

Answers vary by time of day

Also vary by direction

Simulation invaluable!
Why simulate?

- Resolve the decisions
- Determine savings for buses
- Determine effects on others
- Examine tradeoffs
- Optimize system
- Justify funding!!!
Public Transit in NYC

- 5.7 million subway, 2.4 million bus riders per day
- **5,700** buses on 2,800 miles of routes
- Public transit system operated by MTA NYC Transit
- Streets and **13,000** signalized intersections operated by NYCDOT
Problem: Bus Speeds in NYC

Sources:
National Transit Database

<table>
<thead>
<tr>
<th>Year</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>9.1</td>
</tr>
<tr>
<td>2002</td>
<td>8.4</td>
</tr>
<tr>
<td>2014</td>
<td>7.4</td>
</tr>
</tbody>
</table>
Case Study: TSP in NYC

- Wall Street Financial District
- 2nd highest ridership in city
- Intermodal route
- Lots of pedestrians, bicycles
- Unloading trucks
- Congested
- Coordination
- Canyon for GPS signal
- Success *unlikely!*
Comparing Bus Operations With and Without TSP

Without TSP

Active TSP

Intersections Crossed:

Next:

Time saved to last intersection:
04:42
Results: Win-Win!

Travel Time Savings

<table>
<thead>
<tr>
<th>Period</th>
<th>Min/Bus trip</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NB</td>
<td>SB</td>
</tr>
<tr>
<td>AM Peak</td>
<td>3.5</td>
<td>2.6</td>
</tr>
<tr>
<td>Mid-day</td>
<td>0.7</td>
<td>1.7</td>
</tr>
<tr>
<td>PM Peak</td>
<td>3.2</td>
<td>2.6</td>
</tr>
</tbody>
</table>

- **Lowered Bus Travel Time**
 - Up to 18.4%

- **Reduced Delay for Other Traffic**
 - Side streets improved too!
 - Side street delay: 3.2 to 10.3%
 - Peak hour delay for corridor: 12.4 to 15.1%
 - Peak hour delay for all traffic: 8.3 to 11.9%

- **Lowered Variability**
 - Improved reliability
Traffic Engineering for Optimal TSP Success

840 intersections
92 miles

Victory Boulevard:
• S61, S62, S66, S91 Limited, S92 Limited
• 33 intersections
• 5.7 miles

Hylan Boulevard:
• S79 SBS
• 69 intersections
• 14 miles

South Brooklyn Crosstown:
• B82-LTD
• 125 intersections
• 10.2 miles

125th Street & Astoria Boulevard:
• M60 SBS
• 63 intersections
• 6.8 miles

Lower Manhattan:
• M15 SBS
• 34 intersections
• 2.2 miles

South Bronx Crosstown:
• Bx6
• 49 intersections
• 6.0 miles

Webster Avenue:
• Bx41 SBS
• 67 intersections
• 5.3 miles

Main Street & Kissena/Parsons Boulevard:
• Q44, Q25
• 53 intersections
• 5.0 miles

Hillside Avenue:
• Q43
• 40 intersections
• 3.3 miles

Merrick Boulevard:
• Q5
• 26 intersections
• 3.6 miles

Nostrand Avenue:
• B44 SBS
• 33 intersections
• 4.3 miles

Utica Avenue:
• B46 SBS
• 65 intersections
• 5.7 miles

Woodhaven Boulevard:
• Q52/Q53 SBS
• 125 intersections
• 15.5 miles

Transit Signal Priority Projects in New York City
Keys to Success

- Find a champion!
- Bring agencies together
- Communicate!!!
- Know what’s needed
- Understand constraints
- Address bottlenecks
- **Simulation and good traffic engineering!!**
Questions?

Mark Yedlin
Director of Simulation Modeling Services
Greenman-Pedersen, Inc. (GPI)
myedlin@gpinet.com

Thank you!